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Abstract

Quantum spin-Hall systems are topological insulators displaying dissipation-
less spin currents flowing at the edges of the samples. In contradistinction to
the quantum Hall systems where the charge conductance of the edge modes
is quantized, the spin conductance is not and it remained an open problem to
find the observable whose edge current is quantized. In this paper, we define
a particular observable and the edge current corresponding to this observable.
We show that this current is quantized and that the quantization is given by the
index of a certain Fredholm operator. This provides a new topological invariant
that is shown to take the generic values 0 and 2, in line with the Z2 topological
classification of time-reversal invariant systems. The result gives an effective
tool for the investigation of the edge structure in quantum spin-Hall systems.
Based on a reasonable assumption, we also show that the edge conducting
channels are not destroyed by a random edge.

PACS numbers: 73.43.−f, 72.25.Mk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A new class of insulators has recently been found [1–4] to possess a dissipationless quantum
spin-Hall effect. Describing the structure of the edge modes in these systems remains
an interesting issue for both fundamental understanding and potential applications of the
quantum spin-Hall effect [5–13]. It was argued in the literature that the initial Z2 topological
classification proposed in [1] can be further refined to meet this purpose. Not long ago, Sheng
et al [6] introduced a new bulk topological invariant, called the spin-Chern number, which
seemed to contain more information about the edge structure. Later, however, it became clear
that the spin-Chern number is unstable to deformations of the Hamiltonian system and that the
only invariants for the spin-Hall effect are of Z2 type, rather than integer type [7, 9, 10, 12].

Despite the above concentrated efforts that actually lead to a deep understanding of the
topological insulators, there are still a few open problems. First, it is not completely clear
how to describe the topological phases for non-crystalline systems. Second, it is well known
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Figure 1. The figure illustrates the honeycomb lattice, an example of paired sites with the index a
attached to each site, and a random edge �. The contour � never crosses the bonds between the
pairs and is contained between the vertical lines at −D and D.

[1–3, 6] that the spin edge current is not quantized in the quantum spin-Hall systems and it
remained an open problem to find an observable that has such a quantized edge current. It is
worth mentioning that for the integer Hall effect, a complete, rigorous description of the edge
states that goes beyond crystalline systems was achieved only in 2001 by Kellendonk, Richter
and Schulz-Baldes [14]. The present paper was inspired by a later work of these authors [15]
that deals with the quantization of edge currents for half-plane continuous magnetic operators
in the presence of weak random potential. The formalism was put into an abstract setting in
[16], which actually provided the guiding lines for the present paper. This general formalism
was applied in [17] to a simpler problem, namely the quantization of edge currents in Chern
insulators with rough edges. The technical estimates derived in this paper are important for
the present analysis.

The present paper addresses both open issues mentioned above. Using the time-reversal
invariance property of spin-Hall systems, we define an observable and its corresponding current
and we show that the expectation value (taken only over the spectrum in the insulating gap)
of this current is quantized and that the quantization is described by the index of a Fredholm
operator. This is our new topological invariant, which we call the edge index. For the model
considered in [6], we show that this invariant takes the same value as the spin-Chern number
defined in the same reference. For the general case, we show that the edge index takes the
generic values 0 or 2, in line with the Z2 classification of the time-reversal invariant insulators.

2. The model

To be concrete, we consider non-interacting electrons on a honeycomb lattice (see figure 1)
described by the bulk Hamiltonian of [6]:

H0 = −t
∑
〈ij〉,α

|i, α〉〈j, α| + iVSO

∑
〈〈ij〉〉,αβ

[σ · (dkj × dik)]α,β |i, α〉〈j, β|

+ iVR

∑
〈〈ij〉〉,αβ

[ẑ · (σ × dij )]α,β |i, α〉〈j, β|. (1)
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Figure 2. The figure illustrates the energy spectrum of the Bloch Hamiltonians Hk corresponding
to the Bloch decomposition of the edge Hamiltonian relative to the translational symmetry along
the homogenous edge.

This particular model does not play any critical role in our analysis, except that it displays all
the general features that we mention in the following. The Hamiltonian of equation (1) has
time-reversal symmetry and is a good model for electrons in graphene [2]. The first term is the
usual nearest-neighbor hopping term, the second term is an intrinsic SO coupling preserving
the lattice symmetries and the third term stands for the Rashba SO coupling. For details about
the notation please consult [6]. In the following, we consider that we are in the spin-Hall part
of the phase diagram of the model [1].

The bulk model displays two top bands and two bottom bands separated by a gap. The
two bottom bands have opposite Chern numbers c = ±1, so their total Chern number is zero.
When VR = 0, Sz commutes with the Hamiltonian and the model equation (1) reduces to a
spin-up and a spin-down decoupled Haldane models [18]. In contradistinction to the Chern
number, the spin-Chern number cs introduced in [6] is nontrivial: if VR = 0, it reduces to
cs = c↑ − c↓ (= ±2 for the model equation (1), depending on the sign of VSO). cs can be
generalized to the case when Sz is not conserved, like when the Rashba term is present. After
extensive numerical analysis, [6] Sheng et al concluded that the spin-Chern number remains
quantized when VR and a weak disorder are turned on.

The special topological properties of the bulk energy bands have non-trivial consequences
for the surface state spectrum when an edge is cut on a bulk sample. Let us briefly discuss the
edge spectrum for a homogeneous edge. In this case we can use the Bloch decomposition with
respect to the periodicity along the edge and write the edge Hamiltonian as a continuous direct
sum of Bloch Hamiltonians Hk . As illustrated in figure 2, the spectrum of each Hk consists
of upper and lower continuum parts plus two nondegenerate (excepting k = 0), discrete
eigenvalues. These discrete eigenvalues for different k’s assemble themselves in two bands,
shown in red color in figure 2. If the Rashba term is zero, one band corresponds to the spin-up
and the other band to the spin-down. Thus, while the charge moves in opposite directions for
these two bands (leading to zero charge current), the spins move in the same direction and
consequently the edge carries a dissipationless spin current. The edge modes are protected by
the time-reversal symmetry, which means no gap can open in the edge spectrum, even when
the Rashba term is turned on. While Sz is no longer conserved for this later case, the edge still
carries a dissipationless spin current, though no longer quantized. Because of the last fact, the
theory of quantum spin-Hall is still missing a topological invariant that could tell how many
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edge bands one should expect in more complicated models. Finding such an invariant is the
goal of the present paper.

Our analysis will be done in an equivalent system, a triangular lattice with four quantum
states per site. This system is obtained by considering the honeycomb lattice as composed of
pairs of sites sitting on a triangular lattice. For example, the four quantum states residing on
the pair of sites circled in figure 1 can be thought as four quantum states residing at a new
lattice site positioned at the mid point between the pair. This way we obtain an equivalent
triangular lattice model with four quantum states per site (see figure 2). The Hilbert space is
now spanned by the states

|n, a〉, n = (n1, n2) ∈ triangular lattice, a = (a, α), (2)

where a = 1, 2 is the index introduced in figure 1 and α is the spin index. The triangular
lattice sites are described by (n1, n2), where n1 and n2 represent the coordinates along the two
directions shown in figure 2. The bulk Hamiltonian becomes

H0 =
∑
n,n′

∑
a,b

[
�nn′

ab |n, a〉〈n′, b| + �̄nn′
ab |n′, b〉〈n, a|]. (3)

The coefficients �nn′
ab can be computed from equation (1), but their explicit expression is not

needed here. The first sum is over the nearest neighbors.
We now consider the system with the edge. In the lab samples, the strongest irregularities

are probably seen at the edges of the samples, so here we will concentrate on this type
of disorder and will neglect the bulk disorder (the mathematics still work for weak bulk
disorder). On the honeycomb lattice we consider random contours �, like that shown in
figure 1, their main features being that they never cross the bond between the pairs and that
they are confined within −D < n1 < D, where D will be fixed from now on. On the triangular
lattice, � can be described by a sequence {γn}n, where γn gives the deviation of � from the
axis n1 = 0 at the row n2 = n of the lattice, as illustrated in figure 2. We have γn ∈ I, with
I = {−D + 1/2,−D + 3/2, . . . , D − 1/2}. Thus, � can be viewed as a point of the set
� = I×∞: � = {. . . , γ−1, γ0, γ1, . . .}. On the set �, we introduce the product probability
measure, denoted by d�, which is the infinite product of the simplest probability measure ν on
I:

∫
f (n) dν(n) = 1

2D

∑
n∈I f (n), f (n) being any function defined on I. We remark that d�

obtained in this way is ergodic relative to the discrete translations along the vertical direction
of our lattice. We will use d� to average over all possible contours �.

The system with the edge is defined on the Hilbert space H� =
span{|n, a〉, n to the right of �} and its Hamiltonian is given by H� : H� → H� ,

H� =
∑
n,n′

∑
a,b

[
�nn′

ab |n, a〉〈n′, b| + �̄nn′
ab |n′, b〉〈n, a|], (4)

where the first sum is restricted to the sites located to the right of �. H� remains time-reversal
invariant.

3. The main result

We define now the central observable. As was pointed out for the case of translational, time-
reversal invariant, half-integer spin Hamiltonians [1, 2, 5], the Hilbert space can be divided
into two invariant subspaces. This remains true when the translational symmetry is broken.
More precisely, the Hilbert spaces H� can be decomposed as H� = H−(�) ⊕ H+(�), where
the orthogonal subspaces H±(�) have the following special properties:

θH±(�) = H∓(�) and H�H±(�) = H±(�), (5)
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where θ denotes the time-reversal operation, θ = eiπSy/h̄K (K = complex conjugation). An
important observation here is that the construction is not unique. Let us denote by �i

± the
orthogonal projectors onto H±(�) and define �i

� ≡ �i
+ − �i

−, where we reintroduced
the index � to recall that the operator is defined on H� . Our central observable is defined by
the self-adjoint operator

X� = 1
2

(
y��i

� + �i
�y�

)
, (6)

where y�|n, α〉 = n2|n, α〉, defined onH� , is the observable giving the vertical coordinate. The
self-adjoint property of the central observable can be demonstrated by following a technique
developed in [19].

Our systems with edge and the observables X� have very special properties under vertical
translations of the lattice. Let

un|(n1, n2), a〉 = |(n1, n2 − n), a〉 (7)

be the implementation of the lattice translations along the n2 direction. These translations can
also be extended to a map tn acting on the space � of all possible contours �. The map tn
simply shifts a contour downward by n sites. We can now list those special properties

(i) The family {H�}�∈� is covariant: unH�u∗
n = Htn� .

(ii) Based on 1, we can choose �i
� such that un�

i
�u∗

n = �i
tn�

. Moreover,
[
�i

�,H�

] = 0.
(iii) The central observable obeys

unX�u∗
n = Xtn� + n�i

tn�
,

[
X�,�i

�

] = 0. (8)

(iv) For any function f (ε), commutators of the form [X�, f (H�)] form covariant families

un[X�, f (H�)]u∗
n = [

Xtn�, f
(
Htn�

)]
. (9)

We are now gearing toward the main result. We denote the spectral projector of X�

onto the spectrum inside interval [n − 1/2, n+1/2) by π�(n). Note that, at least for a small
Rashba term, the half-integer numbers are outside the eigenvalue spectrum of X� . This
can be shown via estimates on the resolvent of X� using techniques developed in [19]. If
tr0A ≡ Tr{π�(0)Aπ�(0)}, we define the current of X� as [16]:

J� = tr0

{
ρ(H�)

dX�(t)

dt

}
= i tr0 {ρ(H�)[H�,X�]} . (10)

Here ρ(ε) is the statistical distribution of the quantum states. Since we are interested in the
contributions from the edge states, we assume that ρ(ε) is a smooth function with support in
the bulk insulating gap.

Tight-binding Hamiltonians such as H� were analyzed in [17]. With the assumption that
the amplitude of π�(0)|n, a〉 decays sufficiently fast for large |n2|, the technical estimates
given in [17] assure that, in the present paper, all the operators appearing inside the traces are
trace class (so the trace is finite and independent of the basis set used to compute it) and all
the sums are absolutely convergent.

Main statement. Let F(ε) ≡ ∫ ∞
ε

ρ(ε). Note that F(ε) is smooth and equal to 1/0 below/above
the bulk insulating gap; also F ′(ε) = −ρ(ε). We define the following unitary operators:
U� = e−2π iF(H�). If π>

� is the projector onto the non-negative spectrum of X� , then∫
�

d�J� = 1

2π
Ind

{
π>

� U�π>
�

}
. (11)

This is our main statement. Let us comment on it first. The index is an integer number,
defined on the class of Fredholm operators as

Ind A = dim Ker[A] − dim Ker[A∗]. (12)
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It has very special properties, the most important being the invariance to norm-continuous
deformations of the operator that keep the operator inside the Fredholm class. In our case, it
follows from the estimates of [17] that, as long as the gap remains opened and the support of
ρ(ε) remains inside the gap, we can deform ρ(ε) or H� without changing the index. Moreover,
the index is independent of the contour �. To see this, we turn off the Rashba term (without
changing the index) and reduce the system to two decoupled Chern insulators. But for Chern
insulators, it was already shown in [17] that the index is independent of contour �.

We now show that the index is equal to the spin-Chern number introduced in [6]. We
take � as a straight vertical line. Without changing the index, we can turn the Rashba term
to zero. In this case the up and down spins decouple and we can take H± as the spin-up and
spin-down invariant subspaces, respectively. Definitely equation (11) applies equally well to
the case when the set � reduces to one point, the straight contour �0 (all we have to do is to
take D=0). Then we have the following practical way of computing the index:

Ind
{
π>

�0
U�0π

>
�0

} = i tr0
{
ρ
(
H�0

)[
H�0 , X�0

]} = i Tr↑
{
π�0(0)ρ

(
H�0

)[
H�0 , y�0

]
π�0(0)

}
− i Tr↓

{
π�0(0)ρ

(
H�0

)[
H�0 , y�0

]
π�0(0)

}
. (13)

Using the Bloch decomposition, this becomes∑
n

∫ π

k=−π

[
ρ
(
ε

↑
nk

)
∂kε

↑
nk − ρ

(
ε

↓
nk

)
∂kε

↓
nk

]
dk, (14)

where ε
↑,↓
n,k are the edge energy bands. Since

∫
ρ(ε) = 1, each integral gives the difference

between the number of forward and backward moving bands for the corresponding spin,
known to equal the Chern number for the corresponding spin. Thus, the index is equal to the
difference between the Chern numbers for spin-up and spin-down, i.e. it takes the same value
as the spin-Chern number introduced in [6].

Note that our main statement is about the average of the edge current and not the current
itself. However, since the family {H�}�∈� is covariant relative to translations, which act
ergodically on �, the spectrum of H� is non-random. This implies that, if the edge spectrum
becomes localized for a non-zero measure subset of �, it will be localized for all contours,
except a possible zero measure subset of �. But this cannot happen, exactly because the
average of the edge current is non-zero for spin-Hall insulator. This allows us to conclude that
the rough edge cannot destroy the edge conducting channels.

4. Sketch of proof

With our assumption that the amplitude of π�(0)|n, a〉 decays sufficiently fast for large |n2|,
it follows from the technical estimates of [17] that π>

� U�π>
� is in the Fredholm class. Let π<

�

be the projector onto the negative spectrum of X� and �� ≡ π>
� −π<

� . We compute the index
using the formula [16, 17]:

Ind
{
π>

� U�π>
�

} = −1

2

∑
n

Tr
{
π�(n)

(
U ∗

� − I
)
[��,U�]π�(n)

}
, (15)

where the sum is absolutely convergent. The projectors π�(n) leave the subspaces H±(�)

invariant, so they decompose in a direct sum: π�(n) = π−
� (n) ⊕ π+

�(n). Similarly for ��:
�� = �−

� ⊕ �+
� . Due to property (3) listed above we have the following fact:

unπ
±
� (m)u∗

n = π±
tn�

(m ∓ n). (16)

We consider now the average over �. Since the index is independent of �, the operation can
be omitted for the left-hand side. On the right-hand side, we use the fact that the trace of

6
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D-D

-2

n1

n2

Figure 3. The figure illustrates the equivalent triangular lattice. It also shows the contour � from
figure 1. This � can be described by a sequence {γn}n which gives the deviation of � from the
n1 = 0 axis, at n2 = n. The figure illustrates how γ−2 is defined.

trace-class operators is invariant to unitary transformations and that the measure d� is invariant
to the mappings tn, to write

−2Ind
{
π>

� U�π>
�

} =
∑

n

∫
d� Tr

{
u−nπ

−
� (n)(U ∗

� − I )[��,U�]π−
� (n)u∗

−n

}

+
∑

n

∫
d� Tr

{
unπ

+
�(n)(U ∗

� − I )[��,U�]π+
�(n)u∗

n

}

=
∑

n

∫
d� × (

Tr
{
π−

t−n�
(0)

(
U ∗

t−n�
− I

)[
u−n�

−
� u∗

−n, Ut−n�

]
π−

t−n�
(0)

}
+ Tr

{
π+

tn�
(0)

(
U ∗

tn�
− I

)[
un�

+
�u∗

n, Utn�

]
π+

tn�
(0)

})
=

∑
n

∫
d�

(
Tr

{
π−

� (0)(U ∗
� − I )

[
u−n�

−
tn�

u∗
−n, U�

]
π−

� (0)
}

+ Tr
{
π+

�(0)(U ∗
� − I )

[
un�

+
t−n�

u∗
n, U�

]
π+

�(0)
})

. (17)

One important observation here is that

u±n�
±
t∓n�

u∗
±n = sign

(
X±

� + n
)
, (18)

(sign(x)= the usual sign function) so we can draw the partial conclusion that

Ind
{
π>

� U�π>
�

} = −1

2

∫
d� tr0

{
(U ∗

� − I )

[∑
n

sign(X� + n), U�

]}
. (19)

As illustrated in figure 3,∑
n

sign(X� + n) = S(X�) (20)

where S(x) is the staircase function shown in figure 3. But S(x) = 2x + s(x) where s(x) is
a bounded periodic function s(x + n) = s(x). Based on this observation, we show that the
contribution to the index from s(X�) is zero. Indeed, we can follow [16, 17] to show that, and
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-7
-5

-3
-1

1
3

5
7

sign(x-1)
sign(x-2)

sign(x-3)

sign(x+3)

x

sign(x+2)
sign(x+1)

sign(x)

S(x)

Figure 4. A graphical representation of
∑

n sign(x + n) = S(x). The top lines represent the
shifted sign functions sign(x + n). The sum of the top lines results in the stair-like function S(x)

represented by the bottom line.

under certain circumstances satisfied here,∫
d� tr0{A�B�} =

∫
d� tr0{B�A�}, (21)

for any covariant operators A� and B� leaving H±(�) invariant. Since s(x) is bounded, we
can open the commutator below,∫

d� tr0{(U ∗
� − I )[s(X�), U�]} =

∫
d� tr0{(U ∗

� − I )s(X�)(U� − I )}

−
∫

d�tr0{(U ∗
� − I )(U� − I )s(X�)} (22)

and s(X�) is covariant since s(x) is periodic, so due to equation (5) the last two terms cancel
each other identically. Thus, we arrived at the conclusion that

Ind
{
π>

� U�π>
�

} = −
∫

d� tr0{(U ∗
� − I )[X�,U�]}. (23)

But this is exactly equation (42) of [17], with ŷ� replaced by X� . Thus we can repeat the steps
of this work to complete our proof (note that property (4) is needed for this).

5. Discussion

Our construction is based on the splitting induced by the time-reversal operation θ : H� =
H−(�)⊕H+(�). This splitting is in general not unique, but we introduced several constraints
that limit the number of choices. These constraints are: the special requirement (ii) mentioned
in section 3 and the fact that the kernel of the operator �i

� ≡ �i
+ − �i

− needs to be rapidly
decaying. This warrants that our assumption stated before the main statement holds true. Since
the expectation value of the current is taken only over the states inside the bulk insulating gap,
we have to consider only the splitting of the states inside this energy window.

Let us first restrict our discussion to homogeneous edges, in which case the system is
mapped into itself by the discrete translations and the wavenumber k parallel to the edge is a
good quantum number. Dropping the index �, which is no longer needed, the condition (ii)
reads: un�u∗

n = �. Thus, the projections �i
± are translational invariant, thus they must be

8
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- + - +

(a) (b)

k=0 k=0

Figure 5. (Color online.) The diagram shows the bulk insulating gap and two surface bands
crossing it. Both (a) and (b) situations show possible splittings of the states in this energy window
into H± such that θH+ = H−, but only situation (a) leads to projectors �i± = ∫

dk|ψ±,k〉〈ψ±,k |
decaying exponentially with the separation |n2 − n′

2|.

given by sums over the k fibers. For example, the ‘+’ projection must be of the form

�i
+ =

∑
n+

∫
dk|ψn+,k〉〈ψn+,k|, (24)

where ψn,k represent the Bloch functions. The summation goes only over a partial number of
band indices and the integral over k could in principle go only over parts of the Brillouin
zone. Note that the phases of the Bloch functions are not relevant here, a good news
because the phases are in general difficult to control. Now, since the kernel of this projector,
�i

+(n1, n2; n′
1, n

′
2), must decay rapidly with the separation |n2 − n′

2|, the integral over k must
involve the whole interval [0, 2π ] and the band ψn,k must be analytic of k. For time-reversal
invariant spin-1/2 systems, the spectrum is at least doubly degenerate. For the case when the
degeneracy is strictly two-fold, or quaternionically simple [20], the bands in the crystalline
systems come in Kramers pairs and one can easily form the projectors P i

± with the required
properties.

Let us exemplify. Consider first the model (1). As already discussed, there is a pair of
Kramers bands crossing the bulk insulating gap. Figure 5(a) shows a properly chosen splitting,
which gives projectors P i

± that are exponentially decaying with the separation |n2 − n′
2|. In

contradistinction, figure 5(b) shows a bad splitting, which leads to projectors decaying only
as 1/|n2 − n′

2|. As already discussed, the unique choice shown in figure 5(a) leads to an edge
index equal to 2.

We consider now a more complex situation in which we have more bands crossing the
bulk insulating gap. Let us consider the situation of figure 6(a). This is not quaternionically
simple and we know that this case is unstable. The degeneracies at k = 0 are protected by the
time-reversal symmetry, but the other two degeneracies will be split by small perturbations.
The stable situation is shown in figure 6(b), which is quaternionically simple. In both cases
there seems to be more than one possible valid splitting of the states. However, if we want to
define the projectors P i

± so that we go continuously (more precise analytically) from situation
(a) to situation (b), the splitting can be done in only one way, by incorporating the bands that
hybridize when the degeneracies are split into either P i

+ or P i
−. Thus, the only possibility of

splitting the bands, for both (a) and (b) situations, is that depicted in figure 6. Of course there
is a freedom of choice in choosing the ± labels. With this unique choice, the edge index is
zero.

We can continue the argument for more complex situations, but we can already see the
general conclusion: the edge index takes only the values 0 or 2, in line with the Z2 topological
classification of time-reversal invariant systems. Also, for homogeneous edges, the expectation
value of the current of our observable is simply given by the charge current carried by the
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k=0 k=0

++- -

(a) (b)

Figure 6. (Color online.) The diagram shows the bulk insulating gap and four surface bands
crossing it. Case (a) is unstable and small perturbations lead to case (b), which is stable. The
diagrams also show the unique splitting of the states in this energy window into H± such that
θH+ = H−, splitting that gives projectors �i± = ∫

dk|ψ±,k〉〈ψ±,k | decaying exponentially with
the separation |n2 − n′

2| and interpolating smoothly between situations (a) and (b).

bands included in the + sector minus the charge current carried by the bands included in the
− sector of the θ splitting. This current is given by an index which is well defined if the θ

splitting leads to a kernel of �i that is rapidly decaying with the separation |n2 − n′
2|. So

the message of our result is that, whenever such θ splitting exists and the index is non-trivial,
there will be edge states that are topologically protected.

The cases of a rough edge or when a weak bulk random potential is present are more
complicated and, at this moment, we can only assume that the projectors �i

± can be properly
defined. There is already good progress in characterizing the edge states and computing
the Z2 topological invariant for these cases [10]. This work adopted an algorithm originally
proposed by Fukui and Hatsugai [8] for computing the Z2 topological invariant for crystalline
systems to the case of non-crystaline systems. We believe that we can adopt this new explicit
computational algorithm to construct projectors �i

± with the desired properties, for non-
crystaline systems.

6. Conclusions

In conclusion, we found that the current of the observable X = 1
2 [y�i +�iy] is quantized and

that the quantization is given by the index of a Fredholm operator. For the model (1), this index
was shown to take the same value as the spin-Chern number introduced in [6]. In general, the
edge index takes the generic values 0 and 2, in line with the Z2 topological classification of
time-reversal invariant systems.

Our result provides a non-trivial topological invariant that relates directly to the edge of
the quantum spin-Hall system. The robustness of the edge modes to continuous, time-reversal
invariant deformations of the model can now be understood from the special properties of the
index. We have made a fundamental assumption, namely that the amplitude of π�(0)|n, a〉
decays sufficiently fast for large |n2|. For homogeneous edges, we have shown explicitly how
to construct �i with exponentially decaying kernels, in which case the fundamental assumption
holds true. It seems reasonable to assume that one can complete a similar construction for
non-homogeneous edges, in which case the analysis shows that the edge conducting channels
are robust against random deformations of the edge.
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